تمت الكتابة بواسطة: دينا الرقطي آخر تحديث: ١٢:٢٥ ، ٥ سبتمبر ٢٠٢١ ذات صلة قانون حساب مساحة المعين
عند توصيل نقاط المنتصف لأضلاع المعين مع بعضها يمكننا الحصول على مستطيل داخل المعين.
المعين عبارة عن مثلثين وكل مثلث متساوي الساقين، يشتركان في القاعدة.
يُكتب المحتوى على ويكي هاو بأسلوب الويكي أو الكتابة التشاركية؛ أي أن أغلبية المقالات ساهم في كتابتها أكثر من مؤلف، عن طريق التحرير والحذف والإضافة للنص الأصلي.
يمكن أيضاً حساب ارتفاع المعين اعتماداً على طول أحد أضلاعه، وقيمة المساحة، وقيمة إحدى زواياه، وذلك باستخدام المعادلتين الآتيتين:[٣]
قطراه متعامدان وينصفان زواياه، ويشكلان محوري تناظر للمعين.
يمكن أيضاً حساب ارتفاع المعين اعتماداً على قِيَم الأقطار، بالإضافة إلى طول أحد أضلاع المعين، وقيمة المساحة، وذلك باستخدام المعادلتين الآتيتين:[٢]
ارتفاع المعين ومسائل رياضية تطبيقية طرق حساب مساحة المستطيل شارك المقالة
أقطار المعين عمودية على بعضها وتصنع أربعة مثلثات قائمة من نقطة التقاطع.
المعين ويُلفظ بضمّ الميم، هو أحد الأشكال الهندسية رباعي الأضلاع ( مُضلّع رباعي بسيط) تتساوى أطوال هذه الأضلاع جميعها، أو يمكن تعريفه على أنه شكلٌ يتكوّن من مثلَثَين متساويَي الساقَين لهما قاعدة مشتركة وهذه القاعدة المشتركة محذوفةً، ويُعتبر على أنّه متوازي الأضلاع الضلعَين المتجاوبين فيه متساويَين، وكونَ المعين من المضلّعات فإنّ له محيطاً ومساحةً بقوانينَ خاصةٍ به.
مساحة المعين هي حجم السطح بداخله. يتم الحصول على مساحة المعينات باستخدام حجم أقطارها وجوانبها.
عند توصيل نقاط المنتصف لأنصاف أقطار المعين مع بعضها يمكننا read more الحصول على معين آخر داخل المعين الأصلي.
بالإمكان معرفة وتمييز المعين عن باقي أنواع الأشكال الهندسية من خلال معرفة وفحص بعض الخصائص والصفات منها:
القُطران متعامدان وينصّفان زواياه وهما محوَرَي التماثل للمعين، كما أنّ كل قطرٍ من أقطاره يقسم المعين إلى مثلثَين متطابقَين.
قاعدة المعين هي أحد أضلاعه حيث يمكن استخدام طول أي ضلعٍ، لأنه كما ذكرنا سابقًا أضلاع المعين متساوية في الطول، والارتفاع هو المسافة العمودية من القاعدة المختارة إلى الجانب المقابل.